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Bifurcation to oscillations in three-dimensional Rayleigh-Bénard convection

S. Scheel and N. Seehafer
Institut für Physik, Universita¨t Potsdam, Postfach 601553, D-14415 Potsdam, Germany

~Received 7 July 1997!

Three-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary condi-
tions at the top and bottom and periodic boundary conditions in the horizontal directions is investigated by
means of numerical simulation and bifurcation-analysis techniques. The aspect ratio is fixed to a value of 2A2
and the Prandtl number to a value of 6.8. Two-dimensional convection rolls are found to be stable up to a
Rayleigh number of 17 950, where a Hopf bifurcation leads to traveling waves. These are stable up to a
Rayleigh number of 30 000, where a secondary Hopf bifurcation generates modulated traveling waves. We pay
particular attention to the symmetries of the solutions and symmetry breaking by the bifurcations.
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PACS number~s!: 47.20.Ky, 47.20.Bp, 47.54.1r
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I. INTRODUCTION

Rayleigh-Bénard convection, that is, buoyancy-drive
convection in a fluid layer heated from below and coo
from above, is one of the prime examples of bifurcati
high-dimensional systems. It has been a subject of inte
theoretical and experimental study for a long time@1–4#.
Important applications are in, e.g., meteorology, geophys
and astrophysics.

From the theoretical side, several approaches have b
used to analyze and understand the dynamics of
Rayleigh-Bénard system, in particular the formation of th
different stationary or time-dependent patterns observe
experiments, as well as the steps in the evolution towa
turbulence. On the one hand, there are calculations of e
libria and instabilities using perturbation-theoretic metho
@3,5–8#. Most current theoretical knowledge on convecti
patterns seems to have been obtained by this kind of an
sis. More recently, also methods of bifurcation theory@9,10#
are applied, by which one, e.g., derives low-dimensional s
tems of amplitude equations describing the qualitative
havior of the system close to a bifurcation point, thus allo
ing for the characterization of the bifurcation. If symmetri
are present, as is the case for the Rayleigh-Be´nard system,
group-theoretic methods are an important tool of the theo
ical bifurcation analysis@11,12#.

On the other hand, there are numerical simulations
which the governing partial differential equations are in
grated forward in time, starting from selected or random i
tial conditions@13,14#. To some extent the simulations ca
also allow a bifurcation analysis, namely, to get an overvi
of the possible time-asymptotic states for given values of
system parameters. The bifurcation analysis is facilitate
additionally more specific numerical methods are used, s
as eigenvalue calculations at given equilibrium states~which
are given only numerically! and the direct tracing of solution
branches.

In general, convection sets in in the form of stationa
patterns, notably two-dimensional straight rolls, which
stronger buoyancy forces then lose their stability to tim
dependent convection. Small Prandtl numbers of the fluid
favorable for an early transition to time dependence. Diff
561063-651X/97/56~5!/5511~6!/$10.00
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ent oscillatory instabilities of convection rolls were studi
by Busse@15#, Clever and Busse@16,17#, and Boltonet al.
@18#. In Ref. @17# also a bifurcating, time-asymptotic oscilla
tory state was calculated, namely, waves propagating a
the roll axis.

In convection experiments various oscillations are o
served. Their character and, in particular, the kind of
transition from stationary to nonstationary convection is d
tinctly different for small and large aspect ratiosL ~widths of
the fluid layers in units of their depths!; relevant experiments
are summarized, e.g., by Behringer@19# and by Koschmieder
@4#. For small aspect ratios (L less than about 10! only a few
sharp frequencies are present at the onset of time de
dence, while for large aspect ratios a broadband spect
appears and the transition is more gradual. In numer
simulations addressing the latter situation for a low Pran
number fluid, Xi et al. @20# recently found spatiotempora
chaos immediately after the onset of convection.

In this paper the small-aspect-ratio situation is consider
We use numerical methods to study, for an aspect ratio
2A2 and a Prandtl number of 6.8~corresponding to water a
room temperature!, the first three bifurcations in three
dimensional Rayleigh-Be´nard convection with stress-fre
boundary conditions at top and bottom. Particular attentio
paid to symmetry and symmetry breaking.

After introducing the governing equations in Sec. II, w
describe the appearance and stability of two-dimensio
convection rolls in Sec. III, followed by a discussion of the
symmetries in Sec. IV. Then, in Sec. V we study bifurcatio
of the rolls to periodic and quasiperiodic oscillations. Sect
VI gives a discussion of the results.

II. EQUATIONS

We consider buoyancy-driven convection in a plane flu
layer of thicknessd heated from below. Using the Oberbec
Boussinesq approximation, the governing system of par
differential equations reads

]v

]t
1~v•“ !v52“p1PDv1PRuêz , ~1!
5511 © 1997 The American Physical Society
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“•v50, ~2!

]u

]t
1v•“u5vz1Du. ~3!

Herev is the fluid velocity andp andu represent the devia
tions of pressure and temperature from their values in
pure conduction state. We use Cartesian coordinatesx, y,
andz with the z axis in the vertical direction parallel to th
gravitational force.êz is the unit vector in the vertical direc
tion. Equations~1!–~3! are given in dimensionless form
where the units of length and time ared and k/d2, respec-
tively, with k being the thermal diffusivity.u is measured in
units of the temperature differencedT between lower and
upper boundaries of the fluid layer. There are two dim
sionless parameters, the Prandtl numberP and the Rayleigh
numberR, defined by

P5
n

k
, R5

agd3

nk
dT, ~4!

wheren is the kinematic viscosity,a the volumetric expan-
sion coefficient, andg the gravitational acceleration. Th
Rayleigh numberR measures the strength of the buoyan
forces.

We apply periodic boundary conditions with spatial p
riod L in the horizontal directionsx and y. The top and
bottom planes are assumed to be impenetrable, stress
and isothermal:

]vx

]z
5

]vy

]z
5vz5u50 at z50,1. ~5!

For these boundary conditions the following Fourier exp
sions are appropriate:

vx5 (
kx ,ky52`

`

(
kz50

`

ṽ x~k!eikxx1 ikyycoskzz, ~6!

vy5 (
kx ,ky52`

`

(
kz50

`

ṽ y~k!eikxx1 ikyycoskzz, ~7!

vz5 (
kx ,ky52`

`

(
kz50

`

ṽ z~k!eikxx1 ikyysinkzz, ~8!

u5 (
kx ,ky52`

`

(
kz50

`

ũ ~k!eikxx1 ikyysinkzz, ~9!

p5 (
kx ,ky52`

`

(
kz50

`

p̃~k!eikxx1 ikyycoskzz. ~10!

The wave numbersk5(kx ,ky ,kz) are connected with the
integer mode numbersn5(nx ,ny ,nz) by

kx5nx

2p

L
, nx50,61,62, . . . ~11!

ky5ny

2p

L
, ny50,61,62, . . . ~12!
e

-

-

ee,

-

kz5nzp, nz50,1,2,3, . . . . ~13!

With the abbreviations

w5~v•“ !v, f5v•“u ~14!

for the nonlinearities, which have Fourier expansions such
v andu, we arrive at the analogs of Eqs.~1!–~3! in Fourier
space:

05 ikxṽ x1 iky ṽ y1kzṽ z , ~15!

v8 x52 ikxp̃2w̃x2P k2ṽ x , ~16!

v8 y52 iky p̃2w̃y2P k2ṽ y , ~17!

v8 z5kzp̃2w̃z2P k2ṽ z1PRũ , ~18!

u8 5 ṽ z2f̃2k2 ũ . ~19!

Due to the constraint~2!, not all of these equations are inde
pendent of each other. By taking the divergence of Eq.~1!
one eliminates the pressurep, namely,

p̃5 i
kx

k2
w̃x1 i

ky

k2
w̃y1

kz

k2
w̃z2PR

kz

k2
ũ . ~20!

Equations~16! and ~17! can now be written as

v8 x5S kx
2

k2
21D w̃x1

kxky

k2
w̃y2P k2ṽ x1 i

kxkz

k2
~PRũ 2w̃z!,

~21!

v8 y5S ky
2

k2
21D w̃y1

kxky

k2
w̃x2P k2ṽ y1 i

kykz

k2
~PRũ 2w̃z!.

~22!

We restrict ourselves to the case of a vanishing m
horizontal flow, that is,ṽ x(0,0,0)5 ṽ y(0,0,0)50, since any
such flow can be removed by a Galilean transformation. T
can be seen from the relations

v•“vx5
]

]x
vx

21
]

]y
vxvy1

]

]z
vxvz , ~23!

v•“vy5
]

]y
vy

21
]

]x
vxvy1

]

]z
vyvz , ~24!

which show, together with Eqs.~14!, ~16!, and~17! and the
boundary conditions, thatṽ x(0,0,0) andṽ y(0,0,0) are time
independent.

III. TWO-DIMENSIONAL STABLE ROLLS

For the numerical calculations we used a pseudospe
code@21,22# with 16 collocation points in each spatial dire
tion. Time integration was performed using an eighth-ord
Runge-Kutta scheme with adaptive time stepping accord
to @23#. The steady-state solutions were reached after 0.
in our time units, which corresponds to 1 or 2 h computation
time on a DECalpha machine with 150 MHz. However, g
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56 5513BIFURCATION TO OSCILLATIONS IN THREE- . . .
ting onto an attractor for time-dependent states increases
computation time considerably.

In an infinitely extended fluid layer~with no lateral
boundaries!, the critical value ofR for the transition from
the trivial ground statev5u50 ~the pure conduction state!
to convection can be calculated analytically and giv
Rc5657.5 independent of the Prandtl number of the flu
@1,2,4,11#. The associated unstable modes are nonoscillat
with a vertical mode number ofnz51 and a horizontal
wavelength of 2A2, chosen to be our aspect ratioL. Corre-
spondingly, we find that the modes with the lowest mo
numbers, namely, the modes (61,0,1), become unstabl
first.

The unstable perturbations do not yet determine the bi
cating new time-asymptotic state. By applying grou
theoretic methods, it has been shown that steady-state b
cations from the conductive state can lead to convection
the form of two-dimensional rolls, hexagons, or regular
angles @11,24#. For our parameters we find purely two
dimensional, straight, stationary convection rolls, in acc
dance with what is ordinarily seen in experiments in clos
containers@4#. With the roll axes in they direction ~an ori-
entation in thex direction is equally possible!, there is then a
number of symmetry relations for the modes (i ,0,k) ~see Sec.
IV !. There is noy dependence and no velocity component
the y direction. Velocity streamlines in thex-z plane are
shown in Fig. 1.

The two-dimensional stationary roll solution remai
stable up to a second critical Rayleigh number
R517 950527.3Rc . At this point a Hopf bifurcation is ob-
served~cf. Sec. V!.

Now according to analytical and numerical thre
dimensional stability studies, two-dimensional convect
rolls are subject to various kinds of instabilities, notably t
zigzag, cross-roll, and skewed varicose instabilities,
treated for stress-free boundaries in Refs.@7,8# ~see also the
discussion in Ref.@3#, though this primarily refers to rigid
boundaries!. These instabilities do not seem to be releva
for our special case, however. They are thought to have
purpose to decrease or increase the wavelength of the
vection rolls. ForP'7, they affect only roll solutions with
wavelengths larger than the critical one~our L). As we have
fixed our aspect ratioL to the critical wavelength, it is then
not surprising that we do not see these instabilities. Furth
more, the instabilities mentioned~the unstable perturbations!

FIG. 1. Velocity streamlines atR512 000518.25Rc . x andz
are measured in units ofL andd, respectively.
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are mainly of long-wavelength type~with wavelengths larger
thanL) and are thus not admitted by our periodic bounda
conditions. Differences may also arise from the fact that
do not allow a continuum of wavelengths for the perturb
tions. So on the side of the small wavelengths, the one c
est toL is L/2. This reflects the situation of bounded physic
systems.

IV. SYMMETRIES

At the onset of convection, when the bifurcation para
eterR exceeds its critical value only slightly, the resultin
pattern is symmetric with respect to the discrete and cont
ous symmetries

S1 : ~x,y,z!°~2x,y,z!,

~vx ,vy ,vz ,u!°~2vx ,vy ,vz ,u!; ~25!

S2 : ~x,y,z!°S x1
L

2
,y,12zD ,

~vx ,vy ,vz ,u!°~vx ,vy ,2vz ,2u!; ~26!

S3 : ~x,y,z!°~x,2y,z!,

~vx ,vy ,vz ,u!°~vx ,2vy ,vz ,u!; ~27!

T~a!: ~x,y,z!°~x,y1a,z!,

~vx ,vy ,vz ,u!°~vx ,vy ,vz ,u!. ~28!

HereS1 is a reflection in they-z plane or the vertical mid-
plane separating rolls,S2 a reflection in thex-y plane or the
horizontal midplane, combined with a translation of the p
tern in thex direction by one roll orL/2, andS3 a reflection
in a plane cutting the rolls alongside. The only continuo
group operationT(a) is a translation along the roll axis~the
y direction! by a, aP@0,L#, aPR.

There are also symmetries with respect to products of
basic discrete group elements, namely, toS45S1+S2,
S55S2+S3, andS65S1+S3, with

S4 : ~x,y,z!°S 2x1
L

2
,y,12zD ,

~vx ,vy ,vz ,u!°~2vx ,vy ,2vz ,2u!; ~29!

S5 : ~x,y,z!°S x1
L

2
,2y,12zD ,

~vx ,vy ,vz ,u!°~vx ,2vy ,2vz ,2u!; ~30!

S6 : ~x,y,z!°~2x,2y,z!,

~vx ,vy ,vz ,u!°~2vx ,2vy ,vz ,u! ~31!

as well as symmetries with respect to the products betw
the discrete elements and the continuous elementT(a).

The symmetry groupG5$ id,S1 , . . . ,S6 ,T%, which con-
sists of all these operations, is Abelian. Each of the disc
elements is inverse to itself.
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5514 56S. SCHEEL AND N. SEEHAFER
The different symmetries have their specific consequen
for the Fourier coefficients of the velocity and temperatu
fields. For example, symmetry toS1 requires

ṽ x~ i , j ,k!52 ṽ x~2 i , j ,k!,

ṽ y~ i , j ,k!5 ṽ y~2 i , j ,k!,

ṽ z~ i , j ,k!5 ṽ z~2 i , j ,k!,

ũ ~ i , j ,k!5 ũ ~2 i , j ,k!; ~32!

for a solution symmetric with respect toS2 one has

ṽ x~ i , j ,k!5 ṽ y~ i , j ,k!5 ṽ z~ i , j ,k!5 ũ ~ i , j ,k!50,

i 1k odd, ~33!

while for symmetry toS4 the following relations hold:

ṽ x~ i , j ,k!5~21! i 1k11ṽ x~2 i , j ,k!,

ṽ y~ i , j ,k!5~21! i 1kṽ y~2 i , j ,k!,

ṽ z~ i , j ,k!5~21! i 1kṽ z~2 i , j ,k!,

ũ ~ i , j ,k!5~21! i 1k ũ ~2 i , j ,k!. ~34!

The translational symmetry of the system in thex direction
leads to a continuum of coexisting solutions. Only for o
particular among them are the symmetriesS1 and S4 cor-
rectly expressed by Eqs.~32! and~34!; otherwise phase fac
tors corresponding tox translations still appear.

The subgroup formed by the transformationsS1, S2, S4,
and the identity is also found in studies of two-dimensio
convection@25,26#. It is isomorphic to the dihedral groupD2
@11#. The formal structure of the total groupG is then
D23O(2).

V. BIFURCATIONS TO PERIODIC
AND QUASIPERIODIC SOLUTIONS

The second bifurcation atR517 950527.3Rc is a Hopf
bifurcation in which two identical pairs of complex
conjugate eigenvalues pass the imaginary axis. It lead
traveling waves propagating along the roll axis, i.e., in
positive or negativey direction. The multiplicity of the ei-
genvalues is obviously due to the O~2! symmetry with re-
spect to this direction. It is described, e.g., in the review
Crawford and Knobloch@12# that in nondegenerate Hopf b
furcations under O~2! symmetry standing and travelin
waves bifurcate simultaneously, that a stable new solu
exists only if both bifurcate supercritically, and that at mo
one of them can be stable~which one is selected is the
determined by the parameters of the problem!. Traveling
waves have been found for the case of no-slip boundary c
ditions by Clever and Busse@17#.

At the bifurcation point the time period of the oscillation
determined from the imaginary part of the critical eigenv
ues, is t50.066 in our time units~the thermal diffusion
time!. At R520 000 we measuredt50.064. The period of
es
e

l

to
e

y

n
t

n-

-

the modes (i , j ,k) is t/ j if j Þ0. The modes (i ,0,k) are still
time independent. There is now a nonvanishing flow com
nentvy in the axial direction. Snapshots of the velocity pr
files att50, t5t/4, t5t/2, andt53t/4 are shown in Fig. 2.

The criticalR for the Hopf bifurcation as well as the tim
period of the oscillations may be compared with Buss
theory@15# for the instability of convection rolls to perturba
tions in the form of traveling waves under stress-free bou
ary conditions. According to the theory, the criticalR satis-
fies R/Rc50.31P 211, which for our parameters would
giveR/Rc515.3, i.e., a significantly smaller Rayleigh num
ber than we have found. This is again explained by the s
pression of long-wavelength perturbations, which wou
become unstable earlier. For the time period of the osci
tions Busse gives@Eq. ~5.35b! in Ref. @3## t5@2Rc/
3(R2Rc)b

2] 1/2, whereb is the ~axial! wave number of the
waves. The dependence oft on b contained in this formula
admits a direct comparison with the periods found in o
numerical calculations. According to the formula,t50.0717
at our Hopf bifurcation point~with b5p/A2), which is in
good agreement with the value of 0.066 from the pur
numerical calculation. Also for Rayleigh numbers above
Hopf value, the comparison of the time periods gives sa
factory results, but there it is no longer really appropriate
the periods from the formula refer to unstable perturbation
the stationary convection rolls and not to solutions on
new branch, which will depart more and more from the~un-
stable! roll branch.

The Hopf bifurcation breaks the O~2! symmetry in they
direction. More precisely, the reflection symmetry toS3 is
broken: The application ofS3 changes the direction of th
wave propagation, while each periodic orbitas a wholeis
still invariant with respect to translationsT, which merely
produce a time shift. If we formally characterize they-t sym-
metry before the bifurcation by O(2)y3SO(2)t , where
SO(2)t is the circular symmetry with respect to time, th

FIG. 2. Snapshots of the modulus of the velocity field in t
horizontal midplane at different times, calculated f
R520 000530.4Rc . Four neighboring periodic boxes are show
two in each horizontal direction.x andy are measured in units ofL
and t50.066 is the time period measured in units of the therm
diffusion time.
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56 5515BIFURCATION TO OSCILLATIONS IN THREE- . . .
remaining symmetry after the bifurcations is SO(2)y2ct ,
with c denoting the velocity of the wave propagation.

An inspection of the Fourier coefficients shows that a
the symmetriesS1 andS4 are broken, but that the following
relations still hold~after, if necessary, the solution is appr
priately shifted in thex direction!:

ṽ x~ i , j ,k!50, i 1k odd

ṽ y~ i , j ,k!50, i 1k odd

ṽ z~ i , j ,k!50, i 1k odd

ũ ~ i , j ,k!50, i 1k odd

ṽ x~2 i , j ,k!5~21! j 11ṽ x~ i , j ,k!,

ṽ y~2 i , j ,k!5~21! j ṽ y~ i , j ,k!,

ṽ z~2 i , j ,k!5~21! j ṽ z~ i , j ,k!,

ũ ~2 i , j ,k!5~21! j ũ ~ i , j ,k!. ~35!

These relations show that the symmetryS2 is retained in its
original form and that the solutions are symmetric with
spect toS1+T(L/2), i.e., a left-right reflection followed by an
L/2 translation in they direction. This implies that there i
also a symmetry toS2+S1+T(L/2)5S4+T(L/2). The symme-
try group G of the stationary convection rolls may, diffe
ently from the choice in Sec. IV, also be generated by
four transformationsS1+T(L/2), S2, S3, andT. Of the three
discrete symmetries here, then just one, that one corresp
ing to S3, is broken in the Hopf bifurcation. The remainin
spatial symmetry group~time shifts not taken into account! is
generated byS1+T(L/2) andS2 and consists of the elemen
S1+T(L/2), S2, S4+T(L/2), and the identity. It is isomorphic
to the dihedral groupD2.

On further increasing the Rayleigh numberR, at
R'30 000545.6Rc a third bifurcation is observed, which i
again a Hopf bifurcation. The appearance of a second b
frequency~see Fig. 3! leads to a torus solution in phase spa

FIG. 3. Power spectrum of the temporal evolution
Revy(21,1,1) atR532 000548.7Rc . Frequencies are measure
in units of the inverse thermal diffusion timek/d2. The two basic
frequencies aref 1515 ~traveling wave! and f 253.5 ~modulation!.
The strongest frequency in the spectrum isf 1, followed by f 12 f 2.
o

-

e

d-

ic

~depicted in Fig. 4!. In physical space the solution can b
characterized as a modulated traveling wave. Also the s
cial modes (i ,0,k) are now time dependent, but they are sim
ply periodic, oscillating with just one frequency, namely, th
of the modulation. There is now a periodic motion of th
rolls not only in thex direction but also in thez direction.

For the motion being already quite complicated, the nu
ber of modes~16 collocation points in each spatial directio!
is still sufficient. A closer look at modes, e.g., (i ,1,0), with
increasingi reveals that their energy content decreases fr
order 102 in some suitable units for the modes (0,1,0)
order 1025 for the modes (65,1,0). We also performed tes
runs with 32 collocation points in each spatial direction, b
since the results did not change and no other modes w
excited we found it not worth increasing the CPU time by
factor of 8.

In numerical simulations for comparable paramet
(L52A2, P510), as well as stress-free boundary con
tions, Curry et al. @13# observed a transition from single
frequency oscillations to a two-frequency quasiperiodic st
at about the same Rayleigh number as we do.

The torus bifurcation is connected with a further symm
try breaking. In such a case the new solution can be symm
ric to at most one of the three transformations of the sy
metry group of the periodic solution. Actually, the symmet
to S1+T(L/2) survives while the other two symmetries a
broken. So theD2 symmetry of the periodic solution is bro
ken to aZ2 symmetry of the quasiperiodic solution.

VI. DISCUSSION

We have studied Rayleigh-Be´nard convection in a plane
fluid layer with stress-free boundary conditions, using an
pect ratioL of 2A2 and a Prandtl numberP of 6.8. Two-
dimensional convection rolls remain then stable up to a s
ond critical Rayleigh number R517 950527.3Rc .
Instabilities such as the zigzag, cross-roll, and skewed v
cose instabilities seem to be prohibited by the choice of
aspect ratio and the associated suppression of lo
wavelength instabilities.

FIG. 4. Phase-space trajectory projected onto the plane spa

by Reṽ x(3,3,0) and Reṽ x(1,0,3) atR532 000548.7Rc .
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5516 56S. SCHEEL AND N. SEEHAFER
The bifurcation atR517 950 is a Hopf bifurcation lead
ing to traveling waves along the roll axis. The resulti
structures are wavy rolls, as calculated for the case of no-
boundary conditions and Prandtl numbers up to 0.71
Clever and Busse@17#. The frequencies we find agree ve
well with the theory of Busse@15#, who in turn found them
to be in good agreement with experiments, e.g., those
Krishnamurti @27# and others, with large-aspect-ratio co
tainers. Compared to Busse’s theory, we observe the w
to occur at higher Rayleigh numbers. This is again explai
by the suppression of long-wavelength perturbations. T
agreement with the experiments summarized in Ref.@27# is
even improved by the shift to higher Rayleigh numbe
which must of course not be overestimated since, am
other things, our aspect ratio is probably much too smal
allow for a direct comparison with these experiments,
which Busse’s theoretical approach appears to be be
adapted. On the other hand, Gollub and Benson@28# report
an experiment withL53.5,P55, and a transition from sta
tionary to simply periodic convection atR527.2R̃c , where
R̃c is the criticalR for the onset of convection under no-sl
boundary conditions.
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The Hopf bifurcation breaks the spatialD23O(2) sym-
metry of the stationary convection rolls down to aD2 sym-
metry. If symmetry with respect to time is included, the to
symmetry is broken from @D2#x,z3O(2)y3SO(2)t to
@D2#x,y,z3SO(2)y2ct .

At R'30 000545.6Rc a secondary Hopf bifurcation
leads to a torus solution in phase space. The correspon
pattern is a modulated traveling wave. In this bifurcation t
spatial symmetry is broken fromD2 to Z2 ~which is now also
the total symmetry!. The modulated traveling waves are st
symmetric with respect to left-right reflections followed b
L/2 translations in the~originally! axial direction. The bifur-
cations to be expected for further increased Rayleigh nu
bers, which presumably lead to chaotic states, will be
subject of future studies.
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