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Bifurcation to oscillations in three-dimensional Rayleigh-B&ard convection

S. Scheel and N. Seehafer
Institut fir Physik, Universita Potsdam, Postfach 601553, D-14415 Potsdam, Germany
(Received 7 July 1997

Three-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary condi-
tions at the top and bottom and periodic boundary conditions in the horizontal directions is investigated by
means of numerical simulation and bifurcation-analysis techniques. The aspect ratio is fixed to a val@e of 2
and the Prandtl number to a value of 6.8. Two-dimensional convection rolls are found to be stable up to a
Rayleigh number of 17 950, where a Hopf bifurcation leads to traveling waves. These are stable up to a
Rayleigh number of 30 000, where a secondary Hopf bifurcation generates modulated traveling waves. We pay
particular attention to the symmetries of the solutions and symmetry breaking by the bifurcations.
[S1063-651%97)09011-9

PACS numbdss): 47.20.Ky, 47.20.Bp, 47.54r

[. INTRODUCTION ent oscillatory instabilities of convection rolls were studied
by Busse[15], Clever and Bussgl6,17), and Boltonet al.
Rayleigh-B@mard convection, that is, buoyancy-driven [18]. In Ref.[17] also a bifurcating, time-asymptotic oscilla-
convection in a fluid layer heated from below and cooledtory state was calculated, namely, waves propagating along
from above, is one of the prime examples of bifurcatingthe roll axis.
high-dimensional systems. It has been a subject of intense In convection experiments various oscillations are ob-
theoretical and experimental study for a long tifiie-4]. ~ Served. Their character and, in particular, the kind of the
|mp0rtant app”cations are in, e.g., meteoro|ogy' geophysicéransmon from stationary to nonstationary convection Is dis-
and astrophysics. tinctly different for small and large aspect ratiogwidths of
From the theoretical side, several approaches have bedhe fluid layers in units of their depthgelevant experiments
used to analyze and understand the dynamics of thare summarized, e.g., by Behringé®] and by Koschmieder
Rayleigh-Beard system, in particular the formation of the [4]. For small aspect ratiog (less than about 3®nly a few
different stationary or time-dependent patterns observed igharp frequencies are present at the onset of time depen-
experiments, as well as the steps in the evolution towardgence, while for large aspect ratios a broadband spectrum
turbulence. On the one hand, there are calculations of equ@Ppears and the transition is more gradual. In numerical
libria and instabilities using perturbation-theoretic methodssimulations addressing the latter situation for a low Prandtl
[3,5-8. Most current theoretical knowledge on convectivenumber fluid, Xiet al. [20] recently found spatiotemporal
patterns seems to have been obtained by this kind of analghaos immediately after the onset of convection.
sis. More recently, also methods of bifurcation thef@yi0] In this paper the small-aspect-ratio situation is considered.
are applied, by which one, e.g., derives low-dimensional sys¥Ve use numerical methods to study, for an aspect ratio of
tems of amplitude equations describing the qualitative be2v2 and a Prandtl number of 6(8orresponding to water at
havior of the system close to a bifurcation point, thus allow-room temperatupe the first three bifurcations in three-
ing for the characterization of the bifurcation. If symmetriesdimensional Rayleigh-Beard convection with stress-free
are present, as is the case for the RayleighaBe system, boundary conditions at top and bottom. Particular attention is
group-theoretic methods are an important tool of the theoretpaid to symmetry and symmetry breaking.
ical bifurcation analysi$11,17]. After introducing the governing equations in Sec. Il, we
On the other hand, there are numerical simulations irfdescribe the appearance and stability of two-dimensional
which the governing partial differential equations are inte-convection rolls in Sec. IIl, followed by a discussion of their
grated forward in time, starting from selected or random ini-sSymmetries in Sec. IV. Then, in Sec. V we study bifurcations
tial conditions[13,14]. To some extent the simulations can Of the rolls to periodic and quasiperiodic oscillations. Section
also allow a bifurcation analysis, namely, to get an overviewV! gives a discussion of the results.
of the possible time-asymptotic states for given values of the
system parameters. The bifurcation analysis is facilitated if
additionally more specific numerical methods are used, such Il. EQUATIONS

as eigenvalue calculations at given equilibrium stéatetsich We consider buoyancy-driven convection in a plane fluid
are given only numericallyand the direct tracing of solution |ayer of thicknessl heated from below. Using the Oberbeck-

branches. . o . Boussinesq approximation, the governing system of partial
In general, convection sets in in the form of stationarydifferential equations reads
patterns, notably two-dimensional straight rolls, which for
stronger buoyancy forces then lose their stability to time-
dependent convection. Small Prandtl numbers of the fluid are v -
" . ; —+(v-V)v=—=Vp+PAv+ 1
favorable for an early transition to time dependence. Differ- ot (v-¥) Vp+P PRO®,, @D
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k,=n,m, n,=0,12,3.... (13

With the abbreviations
w=(v-V)v, ¢=v-V@ 14

Herev is the fluid velocity ancp and 6 represent the devia- o the nonlinearities, which have Fourier expansions such as
tions of pressure and temperature from their values in thg onq 9 we arrive at the analogs of Eq4)—(3) in Fourier

pure conduction state. We use Cartesian coordinates
andz with the z axis in the vertical direction parallel to the
gravitational forceéZ is the unit vector in the vertical direc-
tion. Equations(1)—(3) are given in dimensionless form
where the units of length and time ateand «/d?, respec-
tively, with k being the thermal diffusivityd is measured in
units of the temperature differenc®l between lower and

upper boundaries of the fluid layer. There are two dimen-

sionless parameters, the Prandtl numPBeand the Rayleigh
numberR, defined by

v agd®
-, R= ST,
K VK

P=

(4)

wherev is the kinematic viscositye the volumetric expan-
sion coefficient, andy the gravitational acceleration. The

Rayleigh numbefR measures the strength of the buoyancy

forces.

We apply periodic boundary conditions with spatial pe-

riod L in the horizontal directionx andy. The top and

bottom planes are assumed to be impenetrable, stress-fr

and isothermal:

vy duy

0z

5 =v,=0=0 atz=0L.

For these boundary conditions the following Fourier expan-

sions are appropriate:

Uy= > D (ke kYoo, z, (6)
ky Ky=—2 K;=0
vy= 2 kZO 7, (k) e kY cog,z, (7)
X Ry ™ z—
v,= 2 > v (ke rikysink,z, (8)
Ky Ky=— K;=0
o= > > (ke tikysink,z, (9)
Ky ky=— K;=0
p= > > pke oo,z (10
ky Ky=—2 K;=0

The wave numberg= (k,,ky,k,) are connected with the
integer mode numberns= (n,,n,,n,) by

2

kx=nxT, n,=0*+1,%x2,... (11
2
ky=nyT, ny=0,i 1,i 2, . (12)

space:
0=ikyx+ikyvy+k,v, (15
0= —ikyp—Wy—Pk%vy, (16)
o,=—ik,p—w,—Pk%,, (17)
5,=k,p—w,— Pk?v,+ PR, (18)
6=1,— d—K?9. (19)

Due to the constrain®2), not all of these equations are inde-
pendent of each other. By taking the divergence of @&g.
one eliminates the pressupe namely,

kee K k

_ — — K,—
D=0 Wyt i—Wy+ —wW,— PR —. (20)
k2 * k2 k2t k2

dequations(16) and(17) can now be written as

kK
k2

wy+

- — kk, o~ ~
ywy—szvari%(’PRe—wz),
(21

~  kyky~ ~ ki - ~
l)Wy+ Izzny_,PkZUy'H%(ma_Wz)-
(22)

We restrict ourselves to the case of a vanishing mean
horizontal flow, that isp ,(0,0,0)=v,(0,0,0)=0, since any
such flow can be removed by a Galilean transformation. This
can be seen from the relations

d d d

_ 2
V~va—5vx+ vavy-i- 7 Vxz (23

9 5
V'VUy:WUy"' 8_vavy+ Evyvz, (249

which show, together Wiyj Eq$14), (1611 and(17) and the
boundary conditions, that,(0,0,0) andv(0,0,0) are time
independent.

Ill. TWO-DIMENSIONAL STABLE ROLLS

For the numerical calculations we used a pseudospectral
code[21,22 with 16 collocation points in each spatial direc-
tion. Time integration was performed using an eighth-order
Runge-Kutta scheme with adaptive time stepping according
to [23]. The steady-state solutions were reached after 0.5—-1
in our time units, which corresponds to L 2h computation
time on a DECalpha machine with 150 MHz. However, get-
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1 ' are mainly of long-wavelength typggvith wavelengths larger
thanL) and are thus not admitted by our periodic boundary
0.8 conditions. Differences may also arise from the fact that we
do not allow a continuum of wavelengths for the perturba-
N 0.6 tions. So on the side of the small wavelengths, the one clos-
esttoL is L/2. This reflects the situation of bounded physical
0.4 systems.
0.2
IV. SYMMETRIES
. ' ‘ At the onset of convection, when the bifurcation param-
-0.5 -0.25 0 0.25 0.5

eter R exceeds its critical value only slightly, the resulting
x pattern is symmetric with respect to the discrete and continu-

FIG. 1. Velocity streamlines & =12 000=18.25%,,. x andz ~ OUS Symmetries

are measured in units &f andd, respectively. Si: (Y2 (—%.y.2)
1' 17 il H L]

ting onto an attractor for time-dependent states increases the

Uy Uy,U5,0)—=(—Vy,0y,0,,0); 25

computation time considerably. (Vx0y0z,0)=>(=0x.0y,02,6) @9
In an infinitely extended fluid layefwith no lateral L

boundaries the critical value ofR for the transition from S: (X,Y,2)—| X+ E,y,l— z),

the trivial ground statey= =0 (the pure conduction state
to convection can be calculated analytically and gives
R.=657.5 independent of the Prandtl number of the fluid
[1,2,4,1]. The associated unstable modes are nonoscillatory,
with a vertical mode number ofi,=1 and a horizontal

(Ux,0y,07,0)=>(Vy, Uy, =V, = 0); (26)

83: (Xiy!Z)H(X!_yvz):

wavelength of 2/2, chosen to be our aspect ratio Corre- (U s0y 05,00y =0y 04,0 (27)
spondingly, we find that the modes with the lowest mode Y Y
numbers, namely, the modes-(,0,1), become unstable T(a):  (XY,2)—(X,y+a,z),
first.
The unstable perturbations do not yet determine the bifur- (Uy:0y 07, 0)—> (v 0y ,0,,0). (28)

cating new time-asymptotic state. By applying group-

theoretic methods, it has been shown that steady-state bifuHere S, is a reflection in they-z plane or the vertical mid-
cations from the conductive state can lead to convection iplane separating rolls, a reflection in thex-y plane or the
the form of two-dimensional rolls, hexagons, or regular tri-horizontal midplane, combined with a translation of the pat-
angles[11,24. For our parameters we find purely two- tern in thex direction by one roll ol./2, andS; a reflection
dimensional, straight, stationary convection rolls, in accorin a plane cutting the rolls alongside. The only continuous
dance with what is ordinarily seen in experiments in closedyroup operatiorT(a) is a translation along the roll axishe
containerd4]. With the roll axes in they direction(an ori- vy direction by a, ac[0L], acR.

entation in thex direction is equally possibjethere is then a There are also symmetries with respect to products of the
number of symmetry relations for the modé®() (see Sec. basic discrete group elements, namely, $=S5,°S,,

IV). There is noy dependence and no velocity component inSg=S,0S;, andSg=S,°S;, with

the y direction. Velocity streamlines in thg-z plane are
shown in Fig. 1.

The two-dimensional stationary roll solution remains
stable up to a second critical Rayleigh number at
R=17 950=27.3R;. At this point a Hopf bifurcation is ob- (VxsVy V7, 0)=>(—vy,0y,—V,,— 6); (29
served(cf. Sec. V).

Sy (X,Y,2)—

L
—x+ E,y,l—z ,

Now according to analytical and numerical three- L
dimensional stability studies, two-dimensional convection Ss: (XY,2)—> X+§’_Y:1_Z>,
rolls are subject to various kinds of instabilities, notably the
zigzag, cross-roll, and skewed varicose instabilities, as (UysVy 02, 0)=>(Vy, — vy, — V5, — 6); (30)
treated for stress-free boundaries in R§758] (see also the
discussion in Ref[3], though this primarily refers to rigid Ss:  (X,¥,2)—(—X,—V,2),
boundaries These instabilities do not seem to be relevant
for our special case, however. They are thought to have the (Ux Uy 07,0~ (—vx,—Vy,Uz,0) (31

purpose to decrease or increase the wavelength of the con-

vection rolls. ForP~7, they affect only roll solutions with as well as symmetries with respect to the products between
wavelengths larger than the critical of@mrL). As we have the discrete elements and the continuous eleriéaj.

fixed our aspect ratih to the critical wavelength, it is then The symmetry grougj={id,S;, . ..,Sg, T}, which con-

not surprising that we do not see these instabilities. Furthersists of all these operations, is Abelian. Each of the discrete
more, the instabilities mentiondthe unstable perturbations elements is inverse to itself.
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The different symmetries have their specific consequences 2 2
for the Fourier coefficients of the velocity and temperature 15 15
fields. For example, symmetry ®, requires o W

Uyi,j k)= =1y (—i,j,k), 0.5 0.5
0 0

vy(i,j,K) =0y (—i,jk), ~1-050 05 1 ~1-050 0.5 1

v (i,],K)=0—1,j,k),

t:XO
2 2
0(i.,j,k)="0(—1,j,k); (32) 18 15
for a solution symmetric with respect 8 one has o o
0.5 0.5
;X(i,j,k)=’1;y(i,j,k)=;z(i,j,k)=’§(i,j,k)=0, 0 0

-1-050 0.5 1 ~1-050 05 1
i+k odd, (33 f::/? i’,:3><7/4
while for symmetry toS, the following relations hold: FIG. 2. Snapshots of the modulus of the velocity field in the
_ _ _ horizontal midplane at different times, calculated for
vy(i,J, K= (=1 Ty (=i,j,k), R =20 000=30.4R,. . Four neighboring periodic boxes are shown,
two in each horizontal directiorx andy are measured in units &f
'{,’y(i i ,k)=(—l)i+k5y(—i,j K), and 7=0.066 is the time period measured in units of the thermal

diffusion time.

vl LI =(=DT 11K, the modesi(j.K) is 7/j if j#0. The modesi(0k) are stil
time independent. There is now a nonvanishing flow compo-
nentv, in the axial direction. Snapshots of the velocity pro-
files att=0, t=7/4,t=7/2, andt=37/4 are shown in Fig. 2.

The critical R for the Hopf bifurcation as well as the time
period of the oscillations may be compared with Busse’s
theory[15] for the instability of convection rolls to perturba-
tions in the form of traveling waves under stress-free bound-
ary conditions. According to the theory, the critidal satis-
fies RIR.=0.31P?+1, which for our parameters would

6(i,j,0=(=1)"" 0(~1,j,k). (39

The translational symmetry of the system in thélirection
leads to a continuum of coexisting solutions. Only for one
particular among them are the symmetrigsand S, cor-
rectly expressed by Eq&32) and(34); otherwise phase fac-
tors corresponding ta translations still appear.

The subgroup formed by the transformatid®s S,, S,
and the identity is also found in studies of two-dimensional i L X
convection[25,26. It is isomorphic to the dihedral group, ~ 9V R/Rc=15.3, i.e., a significantly smaller Rayleigh num-
[11]. The formal structure of the total groug is then ber th_an we have found. This is again egplalned _by the sup-
D,X0(2). pression of Iong—wav_elength pert'urbatlor.ls, which Wogld

become unstable earlier. For the time period of the oscilla-
tions Busse gives[Eq. (5.35h in Ref. [3]] =[2R//
3(R—R.)b?Y? whereb is the (axial) wave number of the
waves. The dependence ofon b contained in this formula

The second bifurcation a2 =17 950=27.3R, is a Hopf admits a direct comparison with the periods found in our
bifurcation in which two identical pairs of complex- numerical calculations. According to the formutes 0.0717
conjugate eigenvalues pass the imaginary axis. It leads tat our Hopf bifurcation pointwith b= /+/2), which is in
traveling waves propagating along the roll axis, i.e., in thegood agreement with the value of 0.066 from the purely
positive or negativey direction. The multiplicity of the ei- numerical calculation. Also for Rayleigh numbers above the
genvalues is obviously due to the(Z) symmetry with re- Hopf value, the comparison of the time periods gives satis-
spect to this direction. It is described, e.g., in the review byfactory results, but there it is no longer really appropriate as
Crawford and Knoblochi12] that in nondegenerate Hopf bi- the periods from the formula refer to unstable perturbation to
furcations under @) symmetry standing and traveling the stationary convection rolls and not to solutions on the
waves bifurcate simultaneously, that a stable new solutiomew branch, which will depart more and more from the-
exists only if both bifurcate supercritically, and that at moststable roll branch.
one of them can be stablgvhich one is selected is then  The Hopf bifurcation breaks the(@ symmetry in they
determined by the parameters of the probleffraveling direction. More precisely, the reflection symmetry Sg is
waves have been found for the case of no-slip boundary corroken: The application 08; changes the direction of the
ditions by Clever and Busdd.7]. wave propagation, while each periodic orbg a wholeis

At the bifurcation point the time period of the oscillations, still invariant with respect to translatiors, which merely
determined from the imaginary part of the critical eigenval-produce a time shift. If we formally characterize th¢ sym-
ues, is7=0.066 in our time unitsthe thermal diffusion metry before the bifurcation by O(ZXSO(2), where
time). At R=20 000 we measured=0.064. The period of SO(2) is the circular symmetry with respect to time, the

V. BIFURCATIONS TO PERIODIC
AND QUASIPERIODIC SOLUTIONS
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10.000 F ' ' ' _38 e
1.000 ¢ (2} _apol ]
> i .
£= [ =
S 0.100 x
< ‘ S —4.2r .
0.010¢ ©
g L —4.4r1 1
0.001 . . . é
0 20 40 60 80 100 a i ]
Frequency E —4.6
FIG. 3. Power spectrum of the temporal evolution of 48] | ‘ .
Revy(—1,1,1) atR=32000=48.7R.. Frequencies are measured : ‘ ' ‘
in units of the inverse thermal diffusion time/d?. The two basic -0.4 f(').2 0.0 0.2 0.4
frequencies aré, =15 (traveling wave and f,= 3.5 (modulation. Amolitude of RVX(B,B,O)

The strongest frequency in the spectruni jsfollowed by f;—f,.
FIG. 4. Phase-space trajectory projected onto the plane spanned
remaining symmetry after the bifurcations is SQ(2}, by Rev,(3,3,0) and Re,(1,0,3) atR=32 000=48.7R.
with ¢ denoting the velocity of the wave propagation.
An inspection of the Fourier coefficients shows that also(depicted in Fig. % In physical space the solution can be
the symmetriess; andS, are broken, but that the following characterized as a modulated traveling wave. Also the spe-
relations still hold(after, if necessary, the solution is appro- cial modes {,0k) are now time dependent, but they are sim-

priately shifted in thex direction: ply periodic, oscillating with just one frequency, namely, that
_ of the modulation. There is now a periodic motion of the
vx(i,j,k)=0, i+k odd rolls not only in thex direction but also in the direction.
For the motion being already quite complicated, the num-
'Jy(i ,J,K)=0, i+k odd ber of modeg16 collocation points in each spatial direction
is still sufficient. A closer look at modes, e.gi,X,0), with
v,(i,j,k)=0, i+k odd increasing reveals that their energy content decreases from
order 16 in some suitable units for the modes (0,1,0) to
B(i,j,k)=0, i+k odd order 10 ° for the modes £5,1,0). We also performed test

runs with 32 collocation points in each spatial direction, but
since the results did not change and no other modes were

U =LK = (=D ok k), excited we found it not worth increasing the CPU time by a

_ o _ factor of 8.

vy(=1L1K)=(=Dvy(i,j.k), In numerical simulations for comparable parameters
- . (L=242, P=10), as well as stress-free boundary condi-
v (—1,j,K)=(=1)v,(i,j,k), tions, Curryet al. [13] observed a transition from single-
_ . frequency oscillations to a two-frequency quasiperiodic state
0(—i,j,k)=(—=1)'a(,j,k). (35 at about the same Rayleigh number as we do.

The torus bifurcation is connected with a further symme-
These relations show that the symme8yis retained in its  try breaking. In such a case the new solution can be symmet-
original form and that the solutions are symmetric with re-ric to at most one of the three transformations of the sym-
spect toS;°T(L/2), i.e., a left-right reflection followed by an metry group of the periodic solution. Actually, the symmetry
L/2 translation in they direction. This implies that there is to S,oT(L/2) survives while the other two symmetries are
also a symmetry t&,°S;°T(L/2)=S,°T(L/2). The symme- broken. So théd, symmetry of the periodic solution is bro-
try group G of the stationary convection rolls may, differ- ken to az, symmetry of the quasiperiodic solution.
ently from the choice in Sec. IV, also be generated by the
four transformations5,°T(L/2), S,, S;, andT. Of the three
discrete symmetries here, then just one, that one correspond-
ing to S;, is broken in the Hopf bifurcation. The remaining ~ We have studied Rayleigh-Bard convection in a plane
spatial symmetry groufiime shifts not taken into accouris  fluid layer with stress-free boundary conditions, using an as-
generated bys,°T(L/2) andS, and consists of the elements pect ratioL of 2.2 and a Prandtl humbeP of 6.8. Two-
S1°T(L/2), S,, SpoT(L/2), and the identity. It is isomorphic dimensional convection rolls remain then stable up to a sec-
to the dihedral grouf,. ond critical Rayleigh number R=17 950=27.3R..

On further increasing the Rayleigh numbéR, at Instabilities such as the zigzag, cross-roll, and skewed vari-
R~30 000=45.6R a third bifurcation is observed, which is cose instabilities seem to be prohibited by the choice of the
again a Hopf bifurcation. The appearance of a second bas&spect ratio and the associated suppression of long-
frequency(see Fig. 3leads to a torus solution in phase spacewavelength instabilities.

VI. DISCUSSION
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The bifurcation atR=17 950 is a Hopf bifurcation lead-
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The Hopf bifurcation breaks the spatial, < O(2) sym-

ing to traveling waves along the roll axis. The resulting metry of the stationary convection rolls down tda sym-
structures are wavy rolls, as calculated for the case of no-slimetry. If symmetry with respect to time is included, the total

boundary conditions and Prandtl numbers up to 0.71 bygymmetry is broken from[D,]y . X O(2),XSO(2)} to
Clever and Bussgl7]. The frequencies we find agree very [p,], y,2XSO(2), -

well with the theory of Buss€15], who in turn found them

At R~30000=45.6R, a secondary Hopf bifurcation

to be in good agreement with experiments, e.g., those Qbaqgs to a torus solution in phase space. The corresponding

Krishnamurti [27] and others, with large-aspect-ratio con-
tainers. Compared to Busse’s theory, we observe the wavi
to occur at higher Rayleigh numbers. This is again explaine
by the suppression of long-wavelength perturbations. Th

agreement with the experiments summarized in R&f] is

even improved by the shift to higher Rayleigh numbers
which must of course not be overestimated since, amon
other things, our aspect ratio is probably much too small t
allow for a direct comparison with these experiments, to

atial symmetry is broken froim, to Z, (which is now also
e total symmetry The modulated traveling waves are still

gttern is a modulated traveling wave. In this bifurcation the

Symmetric with respect to left-right reflections followed by

L/2 translations in théoriginally) axial direction. The bifur-

'cations to be expected for further increased Rayleigh num-

Bers, which presumably lead to chaotic states, will be the

%ubject of future studies.

which Busse’s theoretical approach appears to be better

adapted. On the other hand, Gollub and Ben|s28] report
an experiment with. = 3.5, P=5, and a transition from sta-
tionary to simply periodic convection &=27.2R, where

R is the criticalR for the onset of convection under no-slip

boundary conditions.
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